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The foundation of the scientific method rests on access to data,
and yet such access is often restricted or costly. We investigate
how improved data access shifts the quantity, quality, and diver-
sity of scientific research. We examine the impact of reductions
in cost and sharing restrictions for satellite imagery data from
NASA’s Landsat program (the longest record of remote-sensing
observations of the Earth) on academic science using a sam-
ple of about 24,000 Landsat publications by over 34,000 authors
matched to almost 3,000 unique study locations. Analyses show
that improved access had a substantial and positive effect on the
quantity and quality of Landsat-enabled science. Improved data
access also democratizes science by disproportionately helping
scientists from the developing world and lower-ranked institu-
tions to publish using Landsat data. This democratization in turn
increases the geographic and topical diversity of Landsat-enabled
research. Scientists who start using Landsat data after access
is improved tend to focus on previously understudied regions
close to their home location and introduce novel research top-
ics. These findings suggest that policies that improve access to
valuable scientific data may promote scientific progress, reduce
inequality among scientists, and increase the diversity of scientific
research.
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How does improving access to data affect the rate and direc-
tion of scientific progress? Data are the lifeblood of modern

empirical science and are used to both test and generate sci-
entific theory. Yet, access to scientific data is often costly and
difficult to obtain. Governments, private research institutions,
and key individuals control access to critical data in fields as
diverse as health (1), genomics and biology (2, 3), climate change
(4, 5), ecology (6), astronomy (7), economics (8, 9), and mete-
orology (10). Many government and research organizations
restrict access to their data and prevent data sharing, while others
charge significant fees for data access in order to monetize this
resource (11, 12). For example, the US government has recently
considered whether to substantially increase fees for two widely
used sources of remote-sensing imagery (13). Similar concerns
are being raised about privately owned data. For example, in
the ongoing crisis around COVID-19, commercial data on pop-
ulation mobility from cellphones is proving impactful (14), but
access to such data remains largely restricted. In this paper,
we study the effects of a steep decrease in the cost and shar-
ing restrictions of satellite images collected via NASA’s Landsat
program on scientific research. Our evidence demonstrates that
improving data access not only increases the quantity and qual-
ity of scientific research, it also democratizes and diversifies
science.

Despite the salience of data access for scientific progress,
research on the impact of limiting data access on the rate and
direction of scientific inquiry is limited. Prior work that has
looked at whether scientists who share their data are cited at
higher rates finds mixed results (15, 16) and has also documented
that data sharing among scientists is rare (17). Others have spec-
ulated that improved data access leads to “better science,” but
have not empirically examined this issue (18). In the context of

satellite imagery (our focus), past work has provided some evi-
dence that data costs affect the purchase of these data (19, 20)
and that data access impacts firms relying on those data (21, 22).
These studies, however, offer no insights on the effect of data
access on the rate and direction of scientific progress.

While not focused on data, past research has looked at
how scientific progress responds to improved access to other
research inputs, especially in the life sciences. For example,
intellectual property restrictions on genetic sequences decreased
follow-on research and the development of genetic tests (23).
Similarly, open access to biomaterials (24) increased their dif-
fusion in follow-on research. More recent work has qualified
these findings by showing that mere access might be insuffi-
cient to translate research inputs into publications; prior expe-
rience and resources could also be important (25). Whether
and to what extent these results translate to fields outside of
the life sciences and to the question of data access remains
unknown.

Further, prior research has largely focused on the impact of
improved access on overall levels of scientific output rather than
on scientific inequality. The question of whether and how dis-
advantaged groups of scientists or less studied scientific topics
benefit disproportionately as a result of improved data access
remains underexplored. Important exceptions include recent
work on the impact of open access to genetically engineered mice
on the diversity of follow-on research (26) and work that links
the impact of automation to the entry of outsiders in a field (27).
While insightful, this research does not look at how open access
may reduce inequality between scientists in environments that
vary in terms of resources. Moreover, this work does not directly
link the reduction in inequality to the diversification of science.

Significance

Data access is critical to empirical research, but past work on
open access is largely restricted to the life sciences and has
not directly analyzed the impact of data access restrictions.
We analyze the impact of improved data access on the quan-
tity, quality, and diversity of scientific research. We focus on
the effects of a shift in the accessibility of satellite imagery
data from Landsat, a NASA program that provides valu-
able remote-sensing data. Our results suggest that improved
access to scientific data can lead to a large increase in the
quantity and quality of scientific research. Further, better
data access disproportionately enables the entry of scientists
with fewer resources, and it promotes diversity of scientific
research.

Author contributions: A.N., E.S., and M.d.V. designed research, performed research,
analyzed data, and wrote the paper.y

The authors declare no competing interest.y

This article is a PNAS Direct Submission.y

Published under the PNAS license.y
1 To whom correspondence may be addressed. Email: nagaraj@berkeley.edu.y

This article contains supporting information online at https://www.pnas.org/lookup/suppl/
doi:10.1073/pnas.2001682117/-/DCSupplemental.y

First published September 8, 2020.

23490–23498 | PNAS | September 22, 2020 | vol. 117 | no. 38 www.pnas.org/cgi/doi/10.1073/pnas.2001682117

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 D
ec

em
be

r 
29

, 2
02

1 

http://orcid.org/0000-0002-0803-012X
http://orcid.org/0000-0003-1971-7290
https://www.pnas.org/site/aboutpnas/licenses.xhtml
mailto:nagaraj@berkeley.edu
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2001682117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2001682117/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.2001682117
http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.2001682117&domain=pdf


www.manaraa.com

SO
CI

A
L

SC
IE

N
CE

S

Overall, while “science of science” studies (28–30) suggest that
access to research inputs shape science, further examination of
the impact of improved data access on the quantity, quality, and
diversity of scientific research is warranted.

In this study, we examine two main questions. First, we eval-
uate whether improved data access increases both the quantity
and quality of science. Standard economic theory suggests that
quantity should increase as a result of a reduction in data access
restrictions. Better access should attract users with a lower will-
ingness to pay, thereby expanding the pool of scientists who may
exploit these data for scientific inquiry. With more researchers
in the field, competition should also increase, boosting research
quality (31). However, it is also possible that improved data
access is accompanied by reductions in marketing and training
efforts by the data provider, lowering awareness and reducing
publications (32, 33). Further, even if quantity increases, it is pos-
sible that new projects are initiated by lower-quality researchers
or on low-value projects, thereby lowering the quality of scientific
output. Given contradictory theoretical possibilities, our quanti-
tative examination sheds light on whether lowering data access
restrictions increases or decreases the quantity and quality of
science.

Our second question is whether improved data access democ-
ratizes science by enabling the entry of scientists with more
limited resources and whether it diversifies the topical focus of
scientific research. Inequality in scientific funding is substantial
(34–36), and monetary barriers to data access may exacerbate
these inequalities. Therefore, improving data access may democ-
ratize science by allowing researchers with smaller research
budgets (like those in lower-ranked universities or in the devel-
oping world) to enter the field and publish alongside better
endowed researchers. Further, under a nonlinear model of sci-
ence (37) where similar data can be used for a variety of different
applications, the entry of less endowed researchers may also
translate into a more diverse set of topics and research ques-
tions (38). The pursuit of research is partly a function of personal
interests and local context of the researcher which implies that
a more varied set of researchers is likely to pursue previously
unexplored research questions in previously underexplored areas
and research topics. In our context, for example, the entry of
a researcher from an underrepresented country (China) could
lead to an impactful publication that uses Landsat to research
an understudied place (Sichuan province) and an underexplored
topic (Oncomelania or freshwater snail-driven infectious disease
spread) (39). In our analyses, we therefore test whether and to
what extent data access democratizes and diversifies science.

Setting and Data
We focus on scientific applications of a government-provided
data source that experienced a dramatic shift in access restric-
tions. Specifically, we study NASA’s Landsat program which was
launched in 1972 and is the longest-running enterprise for acqui-
sition of satellite imagery of Earth. While Landsat images were
relatively affordable at first launch, the program was commercial-
ized, and access to imagery was substantially more expensive for
almost a decade between 1985 and 1995, before restrictions and
costs of data access were reduced again. The Landsat collection
of moderate-resolution images of Earth over time provides valu-
able data for researchers interested in studying environmental
and demographic change in a variety of fields, including geology,
forestry, agriculture, regional planning, and climate change. In
1985, the entire program along with all of its data was transferred
from the US government to a private agency. During this time,
costs of data access were relatively high as users were charged
$4,400 per image and data sharing was prohibited. However,
the high cost of data access was accompanied by a substantial
marketing enterprise that was responsible for popularizing and
commercializing the data.

In 1995, the program was transferred back to the US govern-
ment, and image prices dropped to $2,500 per image—a 43%
price reduction. Significantly, data sharing policies were relaxed,
allowing for free transfer of data between scientists, further
reducing costs of data access.∗ These changes meant that scien-
tists purchasing data were facing much lower costs and, perhaps
more importantly, could legally share data for free with other
scientists who did not yet have access. The Landsat program’s
preeminent role in environmental and climate science, combined
with the dramatic variation in the cost of access and sharing con-
straints, provides a unique opportunity to test how data access
restrictions affect both the rate of scientific progress as well as its
diversity.† In this paper, we will refer to the period between 1985
and 1995 as the commercial era and to the period after 1995 as
the open era.

Our data come from two main sources. The first is Landsat
coverage data from the start of the program which details when
and where images were taken, the number of images, and the
image quality of each of those images (based on percentage of
the image covered by clouds) along with a number of other tech-
nical details. Each image captures a fixed “block” on the surface
of the Earth, and the size of one block is roughly 115 miles in
length and 115 miles in width (around 13,200 square miles of
coverage).

The outcome variables in this study come from Scopus,
Elsevier’s “abstract and citation database of peer-reviewed
literature.”‡ The results of a search for “Landsat” (and some
related terms), up to 2005, yield a dataset of academic publica-
tions using or referencing Landsat from 1975 to 2005, composed
of roughly 24,000 publications by over 34,000 authors (see SI
Appendix for more details on our sampling strategy). Note that
this strategy is conservative—we are less likely to include research
using other types of satellite data, but might miss Landsat science
that refers to the data source as “satellite imagery” or uses other
generic terms.§ These publication titles, abstracts, and author
affiliations were geoparsed, where we first detected words that
represented place names (such as the “Columbia Glacier”) using
machine-learning entity-detection algorithms and then geocoded
these place names to obtain a latitude and longitude. This allows
us to match places studied in a paper as well as author loca-
tions to specific blocks on the surface of the Earth corresponding
to a Landsat image location. Our data also include information
on the publication itself (title, year, authors, publication source,
abstract, etc.) as well as other metrics available from Scopus such
as number of citations and journal quality measures. In a set of
additional analyses we compare trends in Landsat publications to
trends in non-Landsat publications, and we use the same strategy
to geoparse these non-Landsat publications.

The Landsat data are freely accessible, while the Scopus data
are only accessible with a subscription. We have created an Open
Science Framework repository that includes links to the freely
accessible data and query statements to extract the Scopus data.

*To put this shift in costs into perspective, the average study in our data focuses on three
geographical areas. Assuming that the study examines change, one would need at least
six images. In the commercial era, such a study would have cost at least $26,400, while
the price would drop to $15,000 after the program was transferred back to the US
government. Moreover, these costs could be lowered further as a result of data sharing
opportunities.

†Note that there were several changes to Landsat data distribution following the tran-
sition in 1995. Our main focus in this paper is on the changes following the 1992 Land
Remote Sensing Policy Act (which then affected the Landsat program in 1995), but we
do provide several estimates of the effect of other changes in SI Appendix.

‡See www.scopus.com.
§Note that there were no other sources of satellite imagery until the early 1990s, and
these less important alternate sources are not included in our sample, so they should
not bias our results.
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The repository also includes the code used to generate the results
(https://osf.io/mw34x/).

Results: Quantity and Quality of Science
We first present evidence that demonstrates the effect of the
transition of Landsat data from the commercial to the open
era. Fig. 1A shows the number of Landsat-related publications
over time. Fig. 1A shows that while the number of publica-
tions was growing rapidly in the period before commercialization
(pre-1985), this growth was halted in the commercial era. Once
Landsat data access improves after 1995, there is a strong and
immediate growth in the number of Landsat-related publica-
tions. As a comparison, the dotted line in Fig. 1A shows the
total number of publications classified by Scopus as being in the
“Earth and environmental science” category during this period.
For this broader set, we do not see a trend break around 1995,
suggesting that the patterns we document are not driven by con-
current changes in the scientific interest toward environmental
topics or the advent of the world wide web, an assertion we rig-
orously test and describe in the next section. Fig. 1 B and C show
how quality is impacted by the easing of access restrictions to
Landsat images. While the number of highly cited papers and
papers in top journals remained flat during the commercial era,
the start of the open era coincided with stark increases in both
the number of publications that garner over 100 citations and
those that are published in a top journal (defined as those in the
top 2% of journals by Scopus’ CiteScore metric).

This descriptive analysis, while striking, is insufficient to fully
establish the causal impact of access restrictions on science.
Therefore, we complement this analysis by formally estimating
the effect of the transition to the open Landsat era post-1995 in
a regression framework. We present an identification strategy
that effectively controls for a large number of alternative factors
that could explain the patterns we describe and helps identify the
causal role of data access restrictions in shaping scientific out-
put. We exploit the fact that Landsat coverage at the block level
was not uniform: technical errors and cloud cover in imagery
caused wide variation in the amount of data available at the
block level, even before Landsat data were commercialized. We
argue that potential research on blocks with a greater amount
of data should have been more affected by the privatization as
compared to blocks that had fewer high-quality images.¶ We
consider the distribution of high-quality images in 1985, and we
split the sample at the median into blocks with a higher level of
coverage (treatment group) and those with a lower level of cov-
erage (control group). In order for this comparison to be valid,
it is important to check that above-median Landsat coverage
areas are not likely to be those in which scientific exploration
is more likely to occur. Our research design addresses this con-
cern directly. Specifically, to control for any selection in terms
of which blocks get better coverage, we control for the aver-
age number of publications in any given block (via block fixed
effects) and examine whether treatment blocks have a greater
increase in publications as compared to control blocks follow-
ing the transition to the open era. If treatment blocks increase
their publications more than control blocks, we can conclude
that improved data access has a causal effect on scientific out-
put. This framework is based on past research that has validated
this approach (21).

Our estimates (SI Appendix, Table S1) from a difference-
in-differences model with block and year fixed effects suggest
that the number of published research articles at the block year
increased by a factor of 3 (mean 0.15) as a result of improv-

¶Although multiple number of images for the same block might seem redundant, typ-
ically, they are not. One feature that makes Landsat data valuable is the fact that it
allows scientists to study change, such as urbanization or deforestation.

ing access. Likewise, the number of highly cited publications
increased by a factor of 6 (mean 0.0019), while the probabil-
ity of any publication at the block year (mean 0.047) increased
by about 50%. Note that these estimates indicate the relative
increase in publications between treatment and control blocks
and not the total global increase as indicated in Fig. 1.

Our baseline specification, while relatively robust, is vulnerable
to two alternative explanations that could cloud the causal inter-
pretation of our findings. First, we classify blocks into treatment
and control groups based on the pre-1985 level of coverage. How-
ever, the Landsat project is constantly collecting new data, and if
treatment blocks started receiving more data post-1995 as com-
pared to control blocks, our estimates capture the effect of more
data and not necessarily the effects of reduced costs of access.
We collect information on the arrival of new images and show
that this explanation cannot explain our findings (SI Appendix,
Tables S8 and S9). Also, note that our research design relies
on the control sample having the capacity to produce new sci-
ence in the open era, an assumption that relies on a sufficient
number of images being available. Accordingly, we present esti-
mates limiting the control sample to only those blocks with five
or more images and by comparing control blocks with above-
median and above-90th percentile blocks in terms of image cover-
age pre-1985. These estimates (SI Appendix, Table S7) show that
both exercises produce findings similar to our baseline estimates.

Second, as shown in Fig. 1A, global publications are increas-
ing during the 1990s, especially in China and other countries
around the world with previously limited participation in science.
To make sure that our results are unaffected by these trends, we
first provide estimates excluding Chinese blocks and show that
our results are robust to their exclusion (SI Appendix, Table S6).
We then conducted another analysis to account for global trends
in publications. Rather than comparing Landsat publications
in treatment and control blocks, we compare Landsat publica-
tions to a sample of over 50,000 geoparsed publications in the
Earth and environmental sciences as identified through Scopus.
Specifically, we compare the evolution of Landsat and non-
Landsat publications at the block year level before and after
1995 (as shown in SI Appendix, Fig. S10). The regression esti-
mates (SI Appendix, Table S10) indicate that even when using
this completely different sample, Landsat publications increase
disproportionately as compared to Earth and environmental sci-
ences publications, indicating that our baseline results are not
contaminated by an overall increase in scientific focus on certain
blocks around the world.

Finally, in SI Appendix we included several additional analy-
ses to show the robustness of our results. For example, in SI
Appendix, Figs. S5 and S9 and Table S5, we show that it is unlikely
that the results from our main research design are driven by
unobserved differences in treatment and control blocks or by
the overrepresentation of blocks in the United States. We also
address the concern that our treatment effect is picking up on
changes in data access that succeeded the 1995 change. In SI
Appendix, Table S2, we show that while the 1995 change has a
significant effect, later changes (in 1999 and 2001) matter as well,
providing robustness for our main proposition that access costs
have a meaningful effect on science.

Results: Democratization of Author Base
Improved data access is unlikely to benefit scientists equally.
Specifically, scientists who are endowed with extensive financial
resources are less likely to benefit from a transition to open data
compared to less endowed scientists (35). Fig. 2A presents a
map showing the locations of authors who use Landsat data in
a scientific publication. A lighter, gray dot indicates locations
with at least one researcher publishing a paper in the period
from 1985 to 1995, i.e., when data access was costly and with
limited sharing restrictions. A dark, black dot indicates
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Fig. 1. Landsat-related publications before, during, and after the Landsat commercialization era. This figure shows the number of Landsat publications
over time for three different types of publications. In all three panels, the bars in blue to the right of the vertical dashed line indicate publications after the
Landsat program was transferred back to the US government. (A) All publications, (B) publications with 100 or more cites as of 2017, and (C) all publications
in about 80 journals that represent the top two percentiles of journals ranked by citation score metrics. In A, the dashed line shows the general trend for all
earth and environmental science publications. In all three panels, note that trends in the number of publications are mostly steady during the commercial
era, after which there is a rapid increase in publications in the open data era.
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Fig. 2. How data access affects who participates in Landsat research. This figure explores the effects of lowering costs of data access on authors’ locations.
(A) A map where each light gray dot represents the presence of at least one author institution that has published a paper using Landsat data before data
access costs were reduced. The dots in black represent locations where an author institution published a paper using Landsat data only after data access
costs were reduced. A graph depicting this change is found in SI Appendix, Fig. S6. (B) Total number of Landsat publications separated by institutional rank
(top 50 vs. 50 to 200) as per the Quacquarelli Symonds (QS) World top university rankings. (C) Total number of publications separated by the authors’ country
income categories. For publications with authors from different country income groups, we sort the publication based on the minimum country income
group. Overall, the data suggest that lowering costs of data access was particularly helpful for authors in lower-ranked institutions and in non–high-income
countries.

locations with researchers who started publishing Landsat
research only after data access restrictions were reduced. The
locations with black dots therefore represent new author loca-
tions, potentially enabled by the reduced cost of access to Land-
sat data after 1995. This map shows that while many authors
in the United States and Western Europe were already lever-
aging Landsat data when access restrictions were high, many
researchers from regions such as South America, Africa, Eastern
Europe, the Middle East, and China started exploiting Land-
sat information only when access restrictions were reduced. A
graphical depiction of this change is in SI Appendix, Fig. S6.

This pattern, where the proportion of authors from less devel-
oped regions and scientific institutions with lower endowments
benefit from lowering the costs of data access, can be clearly
seen in Fig. 2 B and C. Fig. 2B charts the number of publi-
cations from authors in top 50# ranked institutions (in gray)

#We classified every publication as belonging to a top 50 institution if at least one author
was affiliated with an institution in the top 50 universities in the world according to QS
World university rankings.

as compared to those from institutions ranked 50 to 200 (in
blue), while Fig. 2C shows the number of publications by income
level of the authors’ country. As is clear from Fig. 2 B and C,
growth in number of publications is mostly driven by scientists
in contexts with fewer resources. In SI Appendix, Table S3, we
quantitatively examine the differential impact of lowering data
access restrictions for authors in lower-ranked institutions and
those from lower-income regions. Overall, these estimates sug-
gest a statistically significant difference between the increase in
total publications for authors from lower-ranked institutions and
lower-income countries.

Results: Diversity of Scientific Focus
Having shown that the open era democratized Landsat research
by allowing the entry of new authors, we now turn to examining
the question of whether this change also resulted in increased
diversity in scientific focus. Since the types of research ques-
tions studied by scientists are likely to be influenced by their
local contexts, democratizing who participates in science might
diversify science itself. We consider two approaches to measuring
this diversity: the geographic focus of the study and the research

23494 | www.pnas.org/cgi/doi/10.1073/pnas.2001682117 Nagaraj et al.
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topic as captured by the words used in the abstract of a paper
(37). Specifically, we explore whether improved data access facil-
itated research on previously unexplored 1) study locations and
2) topics as indicated by words used in abstracts.

Geographic Focus. We first examine the impact of improved data
access on the geographic focus of the research. Analogous to
the map we presented for authors, Fig. 3A presents a map that
demonstrates the change in the locations examined using Land-
sat data. The dots in gray represent locations that had already
been studied by 1995, while the dots in black represent new
locations that were studied for the first time after data access
had improved. The map shows that after data access improved,
new study locations emerged mainly in middle- and low-income
regions of the world. To show this pattern more directly, Fig. 3B
plots the cumulative number of unique study locations in the
United States, in other high-income countries, and in the rest
of the world. As is clear from Fig. 3B, improving data access
is associated with an increase in study locations, especially in
lower-income countries. Simple regression versions of Fig. 3B
described in SI Appendix, Table S4, confirm that these differ-
ences are statistically significant.‖ SI Appendix, Fig. S7, explores
these patterns further and shows the increase in the number
of unique study locations in a given year and the number of
first-time locations by country income.

We have shown that improved data access led to the entry of
new scientists as well as a focus on new study locations, but it
is not clear whether the two patterns are related. We therefore
conducted additional analyses. First, we split the sample of pub-
lications in the open era into those with at least one author who
had used Landsat data during the commercial era (incumbents)
and those without any authors who had previously used the data
(newcomers). We then calculate whether new study locations
were introduced mostly in newcomer or incumbent publications.
We find that newcomer publications introduce 3,982 new study
locations, while incumbents introduce 1,965 new locations. The
difference is partly driven by publication volume, but even if one
adjusts for this difference, newcomer publications are 15% more
likely to introduce a new study location.

Since new locations may have been studied by incumbent
authors in the absence of newcomers, our next analysis aims to
provide an estimate of how much incumbent authors would have
to expand their horizon to cover the new study locations intro-
duced during the open era. To calculate this estimate, we assign
incumbents to new study locations, measure their distance from
these study locations, and then compare this counterfactual dis-
tribution of distances to the realized distribution of distances
between the actual authors (i.e., newcomers) and the new study
locations.∗∗ Fig. 3C shows the distribution of actual and counter-
factual distances between authors and first-time study locations
in the open era for non-US study locations. As is clear from this
chart, the observed distances between authors and study loca-
tions are significantly lower than the counterfactual distances. In
fact, the average observed distance is 3,196 km, while the aver-
age counterfactual distance is 5,799 km (t = 9.2963), a difference
of over 2,500 km. These patterns hold when considering study
locations within the United States, but the differences are less
pronounced. In SI Appendix, we present more details on this anal-
ysis as well the full distribution of distances that includes both
US and non-US study locations. Overall, this result suggests that

‖Note that these estimates do not adopt the quasi-experimental research design like in
Fig. 1 and represent descriptive (rather than causal) estimates of the impact of data
access restrictions on diversity.

**The method we used to assign incumbents to new study locations is detailed in SI
Appendix.

newly entering scientists played a prominent role in expanding
the geographic focus of Landsat research in the open era.

Topical Focus. While it is clear from Fig. 3 that the democra-
tization of the author base diversified the geographic focus of
Landsat science, we also investigate the extent to which the top-
ical focus in the literature expanded. If new scientists are more
likely to be from different parts of the world and have a variety
of different research interests, it is possible that they use Land-
sat data to examine previously unexplored topics. To reprise the
example we used before, a Chinese researcher using Landsat is
not only more likely to study a region in China, he or she is also
more likely to use it to focus on questions of relevance to the
local context: infectious disease spread from a local freshwater
snail (39). Western scientists in the past might have ignored this
topic.

Our analysis is based on the text in the abstracts of publi-
cations using Landsat data. We first preprocessed the data by
removing stop words, punctuation, and other textual informa-
tion in the abstract field that is not part of the abstract (e.g.,
publisher information). We then tokenized the abstract by iden-
tifying the unique words used in those abstracts. These words
serve as indicators of its topical focus and will form the basis
of our textual analysis. Fig. 4A plots the introduction of these
novel words in our data by calendar year. The graph shows that
while the introduction of novel words was decreasing when data
sharing restrictions were in place, there is a large increase in the
number of unique words in the literature after 1995. This trend
is suggestive evidence of an expansion in scientific focus toward
a more diverse set of topics and fields.

Next we examine the contribution of newcomer scientists to this
growth in the diversity of topics post-1995. We leverage the set of
incumbent and newcomer authors and examine whether there are
differences in the topics studied by both groups. As a first step,
we simply compared words exclusively used by newcomers and
words exclusively used by incumbents in the open era. We find
that newcomers used 26,632 words that had not yet been used in
the commercial era, while incumbents used 13,348 novel words.
This gap is partly driven by the larger number of newcomer pub-
lications, but even when we consider the average number of new
words per publication, newcomers use 38% more novel words per
paper than incumbents (2.49 versus 1.73 per publication).

While the data do suggest that newcomers introduce more
novel words than incumbent scientists, it is not obvious that these
words represent meaningful new research topics. To address this
concern, we measure the semantic relationships between newly
introduced words and examine the internal consistency of those
words. We use word embedding models (40) to examine the vec-
tors of words introduced by newcomers and incumbents. Word
embeddings are locations in a multidimensional space that can
be used to measure symantic relationships between words. For
each word, we identified the five words†† closest in embedding
space and computed the average distance between them. For
example, if we observe the term “tree”, our method classifies it
as being more related in word-embedding space to “forest” than
another word like “glacier.” The computed average distance is
a measure of how related a newly introduced word is to other
newly introduced words. We log-transformed this measure to
produce a relatedness index, where a larger number represents
a word that is more internally consistent and is more likely to be
part of a broader topical discussion. We plot the distribution of
this index separately for the vector of new words introduced by
newcomers and incumbents in Fig. 4B. The graph clearly shows
that the distribution of words introduced by newcomers is shifted

††Results are robust to different cutoffs: 10, 20, and 50 words.
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A

B C

Fig. 3. How data access affects study locations. This figure explores the effects of lowering costs of data access on study locations. (A) A map where each
light gray dot represents at least one Landsat publication that studies the region before data access costs were reduced. The dots in black represent at
least one Landsat publication that studies the region only after data access costs were reduced. (B) Total number of unique locations studied by Landsat
publications separated by country income groups. (C) The distribution of distances between authors and study locations for all study locations that had not
been explored in the commercial era and are located outside the United States. A version of C that includes US locations is in SI Appendix, Fig. S8. Overall,
these findings suggest that easing data access restrictions particularly helped increase the number and range of study locations.

to the right. Therefore, newcomers not only introduce more new
words to the literature, but these words are also more internally
consistent, suggesting that they may capture a new topic or sets of
topics. One example of the set of internally consistent terms that
are introduced by newcomers includes Oncomelania (the genus
of freshwater snail discussed before) along with related terms
such as infection, transmission, snail, and schistosomiasis (a type
of infectious disease).

Finally, if new authors introduce new topics, we should also
expect them to publish their work in a wider set of academic
journals. Compared to the set of 982 unique journals in the com-
mercial era, there were 486 new journals that published work by
incumbent authors and 1,275 new journals that published work
by the new authors in open era.‡‡

Overall, the results from Figs. 3 and 4 are clear: not only did
the opening of Landsat data lead to the entry of a more diverse
author base, but these newcomers also diversified the scientific
discourse itself.

‡‡Journal field in our Scopus publications data includes various document types (journal
articles, books, conference proceedings, and editorials). We did not restrict to only
journals and treated different years of a conference as a different unique journal.

Conclusion
This study examines the role of data access on science. When
data access barriers are relaxed, it is much more likely to be
exploited by scientists, leading to a greater quantity and qual-
ity of scientific output. Further, ease of data access democratizes
science by allowing authors with fewer financial resources to par-
ticipate in the scientific process. This process of democratization
also increases the diversity of scientific research itself.

Our results come from a comparison of high- and low-
coverage areas for a single dataset in the area of Earth and
environmental science research. Future work could general-
ize these findings by comparing across multiple datasets and
research fields with varying levels of data access costs. Despite
our results coming from a single case study, we believe that
they may generalize and be relevant to other fields where
data access is important. As stated in the introduction, the
question of data access is central to virtually every scientific
field that relies on empirical measurement. In each of these
fields, the scientific labor force is divided into a few elites,
who have access to resources and are able to leverage them to
access data, while others must rely on poorer quality data or
engage in primary data collection. As scientific norms change
with many journals now requiring researchers to make their
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Fig. 4. Topical diversity in Landsat science. (A) The total number of first-time abstract words used in Landsat publications. (B) The distribution of the
relatedness index by incumbent (dark) versus newcomer (light) authors. The higher the value of the index, the more related a focal word is to other newly
introduced words. The distribution of newcomer words is clearly shifted to the right, which implies that new words introduced by newcomers are more
likely to be related to other words introduced by newcomers (compared to new words introduced by incumbents).

data available and many funding agencies (in particular, NIH
and NSF) requiring data from funded projects be made avail-
able, many fields are seeing an abundance of data being made
available to a wider set of researchers. Our research suggests
that not only will such improvements in data access affect
the distribution of scientific credit across a wider and more
diverse pool of researchers, they could also shift the topical
focus of scientific research toward a broader set of research
questions.

Ultimately, data are the life blood of scientific research. While
recouping the cost of data generation and maintenance might
sometimes be necessary, our research suggests that policies to

restrict access to important data sources should consider the
costs of such measures on the quantity, quality, and diversity of
science before they are implemented.

Data Availability. All data and code required to generate the results are
publicly accessible and have been deposited in the Open Science Framework
(https://osf.io/mw34x/).
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